Vessel.comms

网站作者1年前KRPC916

在kRPC中,comms 是一个用于获取和控制飞行器通信系统的接口。通过 comms 属性,你可以检查飞行器的信号强度、通信能力等参数。这在任务中保持与地面控制的通信非常重要,特别是在遥远的行星任务中。

功能和使用

  1. 获取通信系统状态comms 属性返回一个 Comms 对象,该对象包含飞行器的通信系统的各种参数。

import krpc

# 连接到kRPC服务器
conn = krpc.connect(name='Comms Example')
space_center = conn.space_center

# 获取当前活动飞行器
vessel = space_center.active_vessel

# 获取飞行器的通信系统接口
comms = vessel.comms

# 打印通信系统的参数
print(f"Signal strength: {comms.signal_strength * 100:.2f}%")
print(f"Signal delay: {comms.signal_delay} seconds")
print(f"Has connection: {comms.has_connection}")
print(f"Control path: {comms.control_path}")
``

示例解释

  1. 连接到kRPC服务器:使用 krpc.connect() 函数连接到 kRPC 服务器。

  2. 获取当前活动飞行器:通过 space_center.active_vessel 获取当前活动飞行器。

  3. 获取通信系统接口:通过 vessel.comms 属性获取飞行器的通信系统接口。

  4. 打印通信系统的参数:从 comms 对象中获取并打印信号强度、信号延迟、是否有连接和控制路径等信息。

常用通信属性

  • signal_strength:飞行器的信号强度,范围从0.0到1.0。

  • signal_delay:信号延迟,以秒为单位。

  • has_connection:布尔值,指示飞行器是否有与地面控制的连接。

  • control_path:一个字符串,表示信号路径上的节点。

应用场景

  • 任务监控:实时监控飞行器的通信状态,确保任务过程中与地面控制保持联系。

  • 自动化任务:在自动化任务中,使用通信系统参数可以决定任务的执行逻辑,例如在信号丢失时进入待机模式。

  • 远程操作:在进行遥远的行星任务时,确保通信系统的有效性,以便进行远程操作和控制。


相关文章

CelestialBody.surface_position(latitude, longitude, reference_frame)

在kRPC中,CelestialBody 类的 surface_position 方法用于获取天体在指定纬度和经度的表面位置。这个方法返回一个三元素的元组,表示指定位置在指定参考系中的 (X, Y,...

Vessel

在kRPC中,Vessel 类的 situation 属性用于获取飞行器当前的状态。飞行器的状态描述了飞行器当前所处的环境或动作,例如在轨道上、降落中、飞行中等。飞行器状态类型以下是一些常见的飞行器状...

Control.radiators

在kRPC中,Control 类没有直接提供 radiators 属性或方法来获取或设置散热器的状态。然而,可以通过访问飞行器的部件(Parts)来控制和监控散热器的状态。import krpc...

class Orbit

在kRPC中,Orbit 类用于表示飞行器或天体的轨道。它包含关于轨道的各种信息和方法,用于获取和计算轨道参数。以下是 Orbit 类的主要成员及其功能:属性apoapsis:轨道远地点的高度,以米为...

krpc transform_rotation

在kRPC中,transform_rotation 方法用于在不同的参考系之间转换旋转。这个方法在需要在不同参考系中进行姿态和方向计算的任务中非常有用,例如从飞行器的参考系转换到地面参考系。功能和使用...

Vessel.auto_pilot

在kRPC中,auto_pilot 是一个用于控制飞行器自动驾驶功能的接口。通过 auto_pilot 属性,你可以设置飞行器的目标姿态,并控制其自动驾驶系统执行这些指令。这在任务中非常有用,可以确保...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。